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ABSTRACT

Score-based structure learning algorithm is commonly used in learning the Bayesian Network. Other than 
searching strategy, scoring functions play a vital role in these algorithms. Many studies proposed various 
types of scoring functions with different characteristics. In this study, we compare the performances of 
five scoring functions: Bayesian Dirichlet equivalent-likelihood (BDe) score (equivalent sample size, 
ESS of 4 and 10), Akaike Information Criterion (AIC) score, Bayesian Information Criterion (BIC) score 
and K2 score. Instead of just comparing networks with different scores, we included different learning 
algorithms to study the relationship between score functions and greedy search learning algorithms. 
Structural hamming distance is used to measure the difference between networks obtained and the true 
network. The results are divided into two sections where the first section studies the differences between 
data with different number of variables and the second section studies the differences between data with 
different sample sizes. In general, the BIC score performs well and consistently for most data while 
the BDe score with an equivalent sample size of 4 performs better for data with bigger sample sizes.

Keywords: Bayesian network, greedy search, heuristic search, score-based, scoring function, structure 
learning 

INTRODUCTION  

Since its introduction by Pearl (1985), the Bayesian Network (BN) has had a huge impact on 
data mining as one of the best mining tools. Numerous studies have been done on learning 
BN in the last few decades. Constraint-based and score-based algorithms are two major 
classes of BN structural learning algorithms while hybrid-based algorithms that combined 

both is later introduced. Despite advantages 
and disadvantages of each algorithm, score-
based algorithms, especially the greedy 
search type algorithm that constantly looks 
for the most improvement in each iteration, 
are used frequently due to its simplicity and 
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effectiveness. With score-based algorithms such as Hill Climbing (Daly & Shen, 2007) and 
K2 algorithm (Cooper & Herskovits, 1992), a scoring function is chosen to calculate the joint 
probability distribution using a BN structure from its corresponding database, and then a 
network searching approach is used to maximise this function. To this end, most score-based 
algorithm research is done on improving the search phase but scoring functions play a vital 
role as well. A good search approach can help to sidestep local maxima while a good scoring 
function can decide which network is closer to the true network. In real world applications, a 
network with a higher score does not always imply a good output. Instead, a network that can 
define the true causal relationship of the problem studied is a better output. 

Scoring functions are usually derived from basic assumptions on the network parameter 
distribution. Based on multinomial sampling and dirichlet distribution assumptions, Heckerman 
et al. (1995) proposed the BD score and further improved it to the BDe score after including 
the likelihood equivalence assumption. Cooper and Herskovits (1992) introduced the K2 score, 
which is a particular case of BD score in their K2 algorithm paper. In other cases without the 
assumption of distribution, log-likelihood score is one of the established scores available. 
However, it does not represent a good score in BN learning as it leads to overfitting due to its 
tendency of favouring a complete network. To limit the overfitting problem, AIC score (Akaike, 
1974) and BIC score (Schwarz, 1978) are proposed by introducing a penalising term in the 
log-likelihood score function. 

In most cases, improvement of BN structural learning is done independently for searching 
mechanism and scoring functions. However, there is a relationship between searching 
mechanism and scoring functions. Each scoring function has its own characteristics and 
advantages that fit into certain learning algorithms. In this study, we were interested in 
identifying which scoring function worked better for a greedy search type algorithm. The 
rest of this paper is organised as follows. Section 2 introduces some preliminary concepts, 
assumptions and notations of Bayesian networks and scoring functions used. This is followed 
by Section 3, which shows the results of our experiment and discusses the results, and lastly, 
Section 4 consists of the conclusion.

MATERIALS AND METHODS

Bayesian Network

BN, also known as Bayesian Belief Network (BBN), is a powerful data mining tool for 
reasoning under uncertainty (Heckerman, 1996). BN is a directed acyclic graph (DAG) that 
consists of two parts G=<S, Θ>. For a set of variables X={X1, X2,…, Xn} from data D, a network 
structure, S, is a set of arcs connecting nodes or variable X, which indicates that there exists 
a dependent relationship between the nodes. Θ is the conditional probability associated with 
each variable. Suppose that Xi denotes a variable and its corresponding node, πi, is the parent 
of each node Xi in S as well as the variable corresponding to the parents. Given the structure 
S, the joint probability distribution for X is given by:

 [1]
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BN is then constructed based on the conditional independence concept, which is defined 
below:

Definition 1 (Conditional Independence) 
Two variables X1 and X2 are conditionally independent given if the variable X3

f (X1 | X3) = f (X1 | X2, X3)  [2]

Bayesian Network Structural Learning

Structural learning in BN refers to selecting the structure that most accurately defines the 
causal relationships between variables from a set of structure candidates. Typically, a structural 
learning algorithm can be separated into three major categories, which are constraint-based, 
score-based and hybrid-based. The constraint-based structural learning algorithm learns the 
network structure by analysing the probabilistic relations entailed by the Markov property of BN 
with a conditional independence test and then constructs a graph that satisfies the corresponding 
d-separation statement (Scutari, 2010). A few common conditional independence tests used for 
constraint-based algorithms are mutual information (Kullback, 1959) and Pearson’s χ2 (Spirtes 
et al., 1993). These tests are able to determine the existence of an edge between two nodes 
based on the conditional independence property as defined in Definition 1. A constraint-based 
algorithm begins with learning the skeleton of the network that is a completely undirected 
network. Most of the learning algorithms restrict the search to the Markov blanket of each node 
(including the parents, the children and the parents of the children of that particular node). The 
next step is to set the direction of the arcs that are a part of the v-structure (a triplet of nodes 
incident on a converging connection Xj->Xi<-Xk). Lastly, direction of other arcs will be set 
to satisfy the acyclicity constraint (Neapolitan, 2004). The Incremental Association Markov 
Blanket by Tsamardinos et al. (2003) and PC algorithm by Spirtes and Glymour (1991) are 
among the well-established and most applied constraint-based algorithms.

On the other hand, the score-based algorithm works differently from the constraint-based 
algorithm. This algorithm is a type of maximisation problem that assigns a score to each network 
structure candidate and tries to maximise it with a certain heuristic search algorithm.  Hill-
climbing and Tabu search (Glover & Laguna, 1993) are known as greedy search algorithms 
while the Genetic algorithm (Goldberg, 1989) and Particle Swarm Optimisation (Kennedy & 
Eberhart, 1995) are examples of metaheuristic algorithms. Greedy search algorithms always 
opt for the best improvement of each iteration, which is referred to as the greedy property while 
metaheuristic algorithms explore the search space with simple or complex procedures inspired 
by natural phenomena. The score of a network structure is a guideline or criterion used to 
measure the fitness of the structure to prior knowledge and data. A score-based algorithm begins 
with an empty or a random structure and modifies the structure afterwards. Some transition 
functions such as adding arcs, deleting arcs or reversing arcs will be applied to the network 
structure to improve the structure’s score. The iteration stops when the score converges at one 
point. However, one of the disadvantages of score-based algorithms is the iteration might be 
stuck at the local maxima and not return an optimum solution.
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The hybrid-based algorithm is a combination of both score-based and constraint-based 
algorithms. It begins with constructing a skeleton or partially directed DAG (PDAG) using 
a conditional independence test. It then continues with performing a constrained score-based 
algorithm on the network obtained in the previous stage. MMHC (Tsamardinos et al., 2006) and 
H2PC (Gasse et al., 2014) are examples of hybrid-based algorithms. Despite the existence of 
various learning algorithms, score-based algorithms are frequently used in real-life applications 
compared to other methods. Constraint-based algorithms are efficient and faster especially when 
the data consist of a large number of variables, but it is strongly dependent on sample size of 
the data, where the results of conditional independence tests used are not entirely reliable with 
finite data (Fast, 2010). This weakness is crucial as most real-life data are limited and even 
incomplete. Although score-based algorithms suffer from limited data as well, the impact is not 
as significant as constraint-based algorithms. Hybrid-based algorithms on the other hand are 
not well established yet and have limited a choice of algorithms compared to the previous two 
types of algorithm. Hence, we are interested in improving score-based algorithms by reviewing 
existing scoring functions and their relationship with learning algorithms, specifically, greedy 
search algorithms. 

Data Assumptions

The following are a few assumptions about the data considered in this study.
I. All variables Xi, i = 1, 2, …, n are discrete and observable and Xi has ri possible values.
II. All data are complete i.e. all instances have values for all variables that have no missing 

data. There are no latent variables in the database.
III. All cases occur independently given a Bayesian network model.

Scoring Functions

Bayesian Dirichlet likelihood-equivalence (BDe). As an extension of the the Bayesian 
Dirichlet score, the BDe score included two more assumptions:

Assumption 1: Likelihood equivalence
Given two directed acyclic graphs, G and G’, such that P(G)>0 and P(G’)>0, if G and G’ are 
equivalent then P(Θ|G)=P(Θ|G’).

Assumption 2: Complete structural possibility
For any complete directed acyclic graph G, we have P(G)>0.
The BDe score with equivalent sample size, , can be expressed (Heckerman et al., 1995) as:

 [3]

where  denotes the number of instances in the database D where the variable   
assigned its kth value (k = 1, 2, …, ri), and its parent  assigned its jth value (j = 1, 2, …, qi),  

 and 
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Akaike Information Criterion (AIC) & Bayesian Information Criterion (BIC). Log-
likelihood (LL) score in BN is a measure of likelihood in log form between the network and 
data parameter. The LL score is written as:

 [4]

The LL score has decomposable property, where the score is the summation of conditional 
probability of each node given their parent sets. It also assumes likelihood equivalence 
assumption as explained in Assumption 1. Due to its likelihood equivalence and decomposable 
property, the LL score is computational efficient when used in structure learning. However, 
the LL score is not commonly used in BN structure learning as it tends to favour a complete 
network. When used in a structural learning algorithm, it tends to generate a fully connected 
DAG, causing overfitting problem. In order to eliminate overfitting problem, a penalised term 
is introduced to limit the number of arcs in the final network. A general penalised LL score, 
PLL, is shown as follows:

 [5]

where,  denotes network complexity, which is the number of parameters 
in Θ for the network G and f(N) is a non-negative penalisation function. When f(N)=1, the 
penalised score function is the Akaike Information Criterion score (AIC) as shown below 
(Akaike, 1974):

 [6]

Later on, Schwarz (1978) proposed a stricter penalised scoring function, Bayesian Scoring 
Criterion score (BIC), which is given as:

 [7]

K2 Score. Cooper and Herskovits (1992) proposed the K2 score, which is a particular case of 
BD score with the uninformative assignment  (corresponding to zero pseudo-counts). 
The K2 score can be expressed as:

 [8]

Decomposability of the K2 score makes it a computational efficient scoring function but it 
does not have a score equivalence property as the previous three scoring functions. However, 
score equivalence property might or might not help in network learning. When we want to 
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learn the causal relationship between variables, we would need to eliminate the equivalence 
network from the true network as they infer a different causal relationship; score equivalence 
property skips this process. On the other hand, score equivalence property can reduce the time 
consumed if we only need the inference of one variable given another as either equivalence 
network can do this task.

RESULTS AND DISCUSSION

Experimental Design

In this experiment, five scoring functions were compared on seven sets of data ranging from 
8 to 417 variables using three benchmark structure learning algorithms. The five scoring 
functions compared were the BDe score (ESS of 4), BDe (ESS of 10), AIC score, BIC score 
and K2 score. Hill Climbing (HC), Tabu Search (TS) and the K2 algorithm were used to test 
the accuracy of each scoring function. Since the optimal equivalent sample size (ESS) of the 
BDe score was unknown, we identified the ESS value by including two variations of the BDe 
score in this study with an ESS of 4 and 10, respectively. The length of the Tabu list used in the 
TS was set as 10 as a simple test was conducted to show that a Tabu list of more than 10 does 
not improve the quality of the network learnt. Node ordering required for K2 algorithm was 
obtained from the true network such that, if xi preceded xj in the ordering, xj must not be in the 
parent sets of the xi. True network in this study referred to the original network constructed by 
the authors of the paper of each dataset. True networks for each dataset are shown in Figures 
1 to 7. Since all variables in the datasets studied did not have a number of parents exceeding 
10 in their respective true network, the maximum number of parents for each algorithm was 
capped at 10.

The end result of networks generated by each scoring function and learning algorithm was 
compared with the true network using the Structural Hamming Distance (SHD) from “bnlearn” 
package in R. A brief explanation of SHD is quoted from Tsamardinos et al. (2006):

 SHD directly compares the structure of the learned and the true networks and its use 
is fully oriented toward discovery rather than inference. SHD between two PDAGs is 
defined as the number of the following operators required to make the PDAGs match: 
add or delete an undirected edge, and add, remove, or reverse the orientation of an 
edge. Thus, an algorithm will be penalized by an increase of the score by 1 for learning 
a PDAG with an extra un-oriented edge and by 1 for not orienting an edge that should 
have been oriented. Algorithms that return a DAG are converted to the corresponding 
PDAG before calculating this measure. The reason for defining the SHD on PDAGs 
instead of DAGs is so that we do not penalize for structural differences that cannot 
be statistically distinguished. 

The first section of this experiment studied the effect of scoring functions on different  
types of datasets with varying numbers of variables as summarised in Table 1. Each dataset 
was run with three learning algorithms using five scoring functions. The final network of 
each simulation was compared to the true network using SHD as explained in the previous 
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paragraph. The smaller the SHD between the network obtained and the true network, the better 
the score. The second section of this experiment investigated the effect of scoring functions  
on same datasets with different sample sizes. We selected three datasets (Alarm, Win95pts  
and Andes) for this study. For each dataset, we generated three sets of data with 5,000,  
10,000 and 20,000 instances, respectively, based on the conditional probability table of the 
true network. The method for comparing is the same as the first section of the experiment with 
different sets of data.

Figure 1. Asia

Figure 2. Alarm
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Figure 3. Hailfinder

Figure 4. Insurance

Figure 5. Win95pts
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Figure 6. Andes

Figure 7. Diabetes

Table 1
Summary of Datasets

Data No. of Variables No. of Instances Reference
Asia 8 5 000 Lauritzen and Spiegelhalter (1988)

Insurance 27 20 000 Binder et al. (1997)
Alarm 37 20 000 Beinlich et al. (1989)

Hailfinder 56 20 000 Abramson et al. (1996)

Win95pts 76 20 000
Developed at Microsoft Research and 
contributed to the community by Jack Breese.

Andes 223 20 000 Conati et al. (1997)
Diabetes 417 20 000 Andreassen et al. (1991)
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Experiment Results

As explained in the previous section, the experiment was divided into two sections. In order 
to simplify the evaluation of the results, we categorised the data into small data (less than 50 
variables), medium data (51-100 variables) and large data (more than 100 variables). The 
results of the first section are tabulated in Table 2 with bold font indicating the lowest SHD 
for each row.

For small data, the BDe score (ESS of 4) gives the best performance by generating 7 out 
of 9 networks with the lowest SHD. This is followed by the BIC score and K2 score with four 
and two networks of the lowest SHD, respectively. However, the BDe score with an ESS of 4 
does not outperform other scoring functions as the differences were not convincing. For medium 
and large data, the BIC score performed best by generating seven networks with the smallest 
SHD from a total of 12 networks. Albeit only seven networks generated by BIC score had the 
smallest SHD, the difference between the BIC score and other scoring functions was significant 
with minimal exception. Surprisingly, the AIC score generated networks with the lowest SHD 
for data on diabetes but it did not differ much from the BIC score and both BDe scores.

The BDe score was asymptotically equivalent to the BIC score but one of the reasons 
the BDe with an ESS of 4 performed better for smaller data was due to the relatively larger 
sample size. BIC scores tend to penalise complex networks more heavily compared to BDe 
scores especially for smaller sample sizes. Since all datasets except Asia had the same sample 
size, which was 20,000 instances, the performance of the BDe score dropped as the number 
of variables increased. On the other hand, BIC scores favour a simpler network for larger data 
with a smaller sample size. Hence, the BIC score performed better than the BDe score as the 
number of variables increased. 

In terms of an ESS parameter for the BDe score, an ESS of 4 outperformed an ESS of 
10 for all networks generated. According to two studies done on finding the optimal ESS for 
BDe scores (Steck & Jaakkola, 2002; Silander et al., 2007), a lower ESS tended to favour 
deletion of arcs while a higher ESS favoured addition of arcs. With a large sample, the learnt 
network becomes an empty graph as the ESS approaches zero and tends to become a fully 
connected graph as the ESS increases. This explains why 4 is better than 10 as the ESS for the 
BDe score in this study as nearly all the networks generated had overfitting problem. Hence, 
a smaller number of ESS reduced the complexity of networks generated and was closer to the 
true network.  

In the comparison with structural learning algorithms, the BIC score performed well for 
both Hill Climbing and Tabu search. Meanwhile, the K2 score occasionally performed better 
when the K2 algorithm was used. Although the K2 score performed better for certain data, the 
difference was small and the time consumed for the K2 score was significantly higher than for 
the others. For the second section of this experiment, the results are tabulated in Table 3. The 
results of different sample sizes on the Alarm data once again strengthened the belief that the 
BDe score performed better for larger sample sizes. For Alarm data with 20,000 instances, the 
BDe score with an ESS of 4 performed better with HC and TS. However, when the sample 
size was reduced to 10,000, the BIC score started to perform better and this was proven when 
the sample size was reduced to 5,000.
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Table 2
Comparison Between Datasets

Data
Structural 
learning 

algorithm

Structural hamming distance (SHD)

BIC AIC BDe(4) BDe(10) K2

Asia

HC 1 4 1 8 8

TS 1 4 1 8 8

K2 1 4 1 8 4

Insurance

HC 45 43 42 45 39

TS 44 42 36 39 39

K2 9 11 10 29 10

Alarm

HC 35 53 25 38 33

TS 31 49 14 37 33

K2 6 19 10 14 7

Hailfinder

HC 12 25 19 19 39

TS 12 44 35 42 39

K2 12 15 18 18 25

Win95pts

HC 38 106 125 187 66

TS 38 106 125 188 66

K2 19 90 109 154 19

Andes

HC 30 512 112 192 216

TS 30 515 113 194 216

K2 21 473 94 168 53

Diabetes

HC 497 445 431 464 695

TS 497 445 431 464 695

K2 176 77 111 149 118
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Table 3
SHD Comparison Between Sample Sizes

Data
Structural 

learning algorithm

Structural hamming distance (SHD)

BIC AIC BDe(4) BDe(10) K2

Alarm20000

HC 35 53 25 38 33

TS 31 49 14 37 33

K2 5 19 10 14 7

Alarm10000

HC 12 36 18 18 23

TS 14 36 13 15 23

K2 2 23 12 13 2

Alarm5000

HC 12 32 15 32 28

TS 12 32 15 33 21

K2 4 24 6 24 5

Win95pts20000

HC 38 106 125 187 66

TS 38 106 125 188 66

K2 21 90 109 154 19

Win95pts10000

HC 46 114 146 212 86

TS 46 114 147 212 88

K2 23 89 121 181 40

Win95pts5000

HC 48 100 148 217 80

TS 48 100 152 217 80

K2 27 86 152 197 36

Andes20000

HC 30 512 112 192 216

TS 30 515 113 194 216

K2 21 473 94 168 53

Andes10000

HC 45 493 127 240 267

TS 45 493 134 242 267

K2 31 443 110 211 65

Andes5000

HC 72 521 173 297 262

TS 72 525 174 298 262

K2 57 455 152 259 105
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CONCLUSION

In this paper, five scoring functions were compared: BIC, AIC, BDe (ESS of 4), BDe (ESS of 
10) and the K2 score. Two factors were manipulated to study the effects of scoring functions on 
data with a different number of variables and sample sizes. The first part of this study compared 
the performance of scoring functions between seven sets of data with different numbers of 
variables, while the second part of the study compared the scoring functions between three 
sets of data with different sample sizes. 

The performance of the scoring functions in this study were measured using structural 
hamming distance (SHD) between the network generated for each scoring function and the 
true network. A smaller number of SHD indicated better similarities between the two networks, 
which implied that a better network was learnt. Albeit the higher scoring was advocated in 
network learning, defining a true causal relationship was more important as an overfitting 
network does not always imply true causal relationship. 

When the sample size was relatively large, the BDe score with an ESS of 4 performed well. 
But as the number of variables increased, the data sample size was relatively smaller and the 
performance of the BDe score descended. On the other hand, the BIC score performed well 
and was consistent for all data regardless of the number of variables and sample size. Most 
of the networks generated using the AIC score was too complex and faced the problem of 
overfitting. Although the K2 score performed better with the K2 algorithm in certain cases, it 
is not recommended for use as the difference was insignificant while the time consumed was 
significantly greater. Different greedy search learning algorithms used have minimal impact 
on the performance of scoring functions. Based on the results, all networks generated had 
more arcs than the true network. In this case, it implies that stricter penalided terms tend to 
produce a network more similar to the true network. However, the penalised term is hard to 
determine as strict terms will produce barely connected network for data with few variables 
while loose terms will produce a fully connected graph for a large network in extreme cases. 
In summary, the BIC score is definitely the best benchmarked score for a greedy search type 
network learning algorithm and the BDe score can perform equally well provided the sample 
size is large.
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